Kafka and Storm on Raspberry Pi // INSA Lyon - Département Télécommunications

INSA Lyon - Département Télécommunications
By exchange student Jes Rydall Larsen
Supervisor: Frédéric Le Mouél

Kafka and Storm on
Raspberry Pi

21t December 2018

Introduction

This step-by-step guide will describe how to set up two Raspberry Pi's to run two similar

WordCount examples with Apache Kafka as well as with Apache Storm.
The goal of the guide is to:

1. Set up everything as quickly as possible. No details of how anything is working will be
included in the guide.
2. Give the commands to run the basic examples.

What hardware do you need to start?

e (Atleast) 2 x Raspberry pi model 3, which is already running Raspbian

e A laptop (this guide will assume you run Linux, but Windows should work just as well)
o Some basic knowledge of how to use the Linux terminal

e An external monitor might be of help

How to read and use the guide

e You can jump over any step in the guide. However the guide will not go through basic
Linux commands twice. If you are able to create and remove files & folders, move files,
rename files, change directory, unpack folders and use root user, then this should not a
problem.

e <> brackets should always be replaced by the information you need to use. This includes

removing the brackets.

Page 10f 16

Kafka and Storm on Raspberry Pi // INSA Lyon - Département Télécommunications

Table of content

Setup of Raspberry Pi to your WiFl connection

How to connect with SSH to the Raspberry pi
1) You have an external monitor
2) You do not have an external monitor

Change of hosthame
Setup of Maven

Setup of Zookeeper
Setup of Zookeeper settings
Zookeeper commands

Apache Kafka
Set up of Kafka settings
Commands

How to set up the WordCount example

How to compile and run the WordCount example
Extra: How to set up an automatic producer for the WordCount example

Apache Storm
Set up of the settings
Commands
How to set up the WordCount example

How to compile and run the WordCount example

How to close down running terminal tasks and shutdown the Raspberry Pi's

Benchmark
Sources of error

References

0 g O o O oo, A A PP WOWW W

S o

13
13
13
14
14

14

15
15

16

Page 2 of 16

Kafka and Storm on Raspberry Pi // INSA Lyon - Département Télécommunications

Setup of Raspberry Pi to your WiFl connection

e Take out the MicroSD card, and insert in a computer.

e Sshis disabled in newer versions of Raspbian for safety reasons. Make a file just called
'ssh' and nothing else in the Boot directory. When the Raspberry Pi reboots next time, it

will enable ssh and delete the file.

e Open the file /etc/wpa_supplicant/wpa_supplicant.conf as administrator in the Rootfs
directy and insert the following information with wifiname-ssd and password corrected in
the bottom of the file.

network=

{

ssid="wifiname-ssd"
psk="password"

}

e Move the Micro SD card back into the Raspberry Pi. It will now automatically connect to

WiFi when turned on.

How to connect with SSH to the Raspberry pi

You need to know the IP adress of the Raspberry Pi. There is two ways to do this.

1) You have an external monitor

e Connect the Raspberry Pi to the monitor. It's IP address should be stated as one of
the last lines after booting, if it connected successfully to WiFi.

e Open a terminal and write the following with the given IP address:

user@machine:~$ ssh pi@<ip-address here>

o An alternative is to use a tool like PuTTY to connect via SSH. X11 needs to be
enabled to do so (SSH—X11—check box).

Page 3 of 16

Kafka and Storm on Raspberry Pi // INSA Lyon - Département Télécommunications

2) You do not have an external monitor

e Download a tool to search the network for active IP addresses. A recommended tool
could be Angry IP Scanner. Use it to search the network, and you should be able to see

the Raspberry Pi's as alive hosts if they have successfully connected to the WiFi.

e Open aterminal and write the following with the given IP address from the scan:

user@machine:~$ ssh pi@<ip-address here>

o An alternative is to use a tool like PuTTY to connect via SSH. X11 needs to be

enabled to do so (SSH—X11—check box enable).

Change of hostname

It can be a good idea to change the hostname since two Raspberry's will be running.
e Go two folders up from the home folder and go to etc folder (cd ../../etc)

e Change the name in the following two files (files can be saved with nano by pressing Ctrl
+ X, then Y followed by Enter)

pi@pi:/etc $ sudo nano hostname

pi@pi:/etc $ sudo nano hosts

e In hosts: find the line starting with 127.0.0.1, and change it to your new hostname.

e The change will take effect after the next reboot.

Setup of Maven

Create a new folder in the home directory called ‘opt’ with mkdir. Download and unzip Maven to
this folder. It needs to be added to the system profile settings where the shell can find Maven.
Sudoedit the file etc/profile.d/maven.sh and add the following text (etc folder is two up from

home directory).

export M2_HOME=/home/pi/opt/maven

export "PATH=$PATH:$M2 HOME/bin"

Page 4 of 16

Kafka and Storm on Raspberry Pi // INSA Lyon - Département Télécommunications

Setup of Zookeeper

Zookeeper will be used for Kafka as well as for Storm.

You can either take out the SD cards and download the latest version of Zookeeper to the card.

Or you can use the following command:

sudo wget <download link here>

Unpack the file with:

sudo tar -xzf <foldername>

The folder can be renamed with:

sudo mv zookeeperFoldernamel2345-678-9 newZookeeperFoldername

Setup of Zookeeper settings

From home directory go to folder ../../var. Create a folder with mkdir called zookeeper. In this
folder you need to create a new file called ‘myid’. This folder should contain the id-number of the

node. So one Raspberry should have a myid file containing ‘I’ and the other ‘2’. Nothing else!

In the zookeeper folder modify the conf/zoo.cfg file. Add the following settings:

tickTime=2000
initLimit=10
syncLimit=5

dataDir=/var/zookeeper
clientPort=2181
server.1l=<ip>:2888:3888
server.2=<ip>:2888:3888

The ip should be ’0.0.0.0’ for the node/Raspberry itself. The lines follow this form:
server.myid=host:port:port.

Page 5 of 16

Kafka and Storm on Raspberry Pi // INSA Lyon - Département Télécommunications

Zookeeper commands
To start Zookeeper. Be aware. It will give no warnings if problems occur:

sudo ./bin/zkServer.sh start

To check if it started successfully (start zookeeper on all nodes before doing this):

sudo ./bin/zkServer.sh status

To stop zookeeper:

sudo ./bin/zkServer.sh stop

In case of debugging:

sudo /bin/zkServer.sh start-foreground

Apache Kafka

Download a binary version of Kafka to the Raspberry's with wget or directly to the SD card.

Set up of Kafka settings

In the Kafka folder, modify the conf/server.properties file, so it include the following:

broker.id=<myid> # the id of the node. '1' or '2' in our case.

port=9092

host.name=<ip-address of node>

zookeeper.connect=<ip-address for node with myid 1>:2181,<ip-address for
node with myid 2>:2181

listeners=PLAINTEXT://:9092
log.dirs=/tmp/kafka-logs-2
delete.topic.enable=true

The bin/kafka-server-start.sh file also needs to be modified with the following settings:

export JMX_PORT=${JIMX_PORT:-9999}
export KAFKA HEAP_OPTS="-Xmx256M -Xms128M" # Otherwise, JVM would complain

not able to allocate the specified memory.

Page 6 of 16

Kafka and Storm on Raspberry Pi // INSA Lyon - Département Télécommunications

bin/kafka-run-class.sh with the following:

KAFKA_JVM_PERFORMANCE_OPTS="-client -XX:+UseParNewGC
-XX:+UseConcMarkSweepGC -XX:+CMSClassUnloadingEnabled

-XX:+CMSScavengeBeforeRemark -XX:+DisableExplicitGC
-Djava.awt.headless=true"” # change -server to -client

Commands

Run Kafka:

sudo ./bin/kafka-server-start.sh config/server.properties

Create a topic named ‘streams-plaintext-input’:

bin/kafka-topics.sh --create \
--zookeeper localhost: \
--replication-factor
--partitions \
--topic streams-plaintext-input
Created topic "streams-plaintext-input”

List all topics. Change ‘list’ with ‘describe’ for descriptions of each topic.

bin/kafka-topics.sh --zookeeper localhost:

Create a producer on topic ‘streams-plaintext-input’:

sudo bin/kafka-console-producer.sh --broker-list localhost: --topic
streams-plaintext-input

Create a basic consumer on topic ‘streams-wordcount-output’, that does not work with the

WordCount example:

sudo bin/kafka-console-consumer.sh --bootstrap-server localhost:

--topic streams-wordcount-output

Page 7 of 16

Kafka and Storm on Raspberry Pi // INSA Lyon - Département Télécommunications

Create a consumer that will work with the WordCount example:

sudo bin/kafka-console-consumer.sh --bootstrap-server localhost:
--topic streams-wordcount-output \
--from-beginning \
--formatter kafka.tools.DefaultMessageFormatter \
--property print.key=true \

--property print.value=true \

--property
key.deserializer=org.apache.kafka.common.serialization.StringDeserializer \

--property
value.deserializer=org.apache.kafka.common.serialization.LongDeserializer

How to set up the WordCount example

Set up a new project structure using Maven:

sudo mvn archetype:generate \
-DarchetypeGroupId=org.apache.kafka \
-DarchetypeArtifactId=streams-quickstart-java \
-DarchetypeVersion= .0\
-DgroupId=streams.examples \
-DartifactId=streams.examples \
-Dversion= \
-Dpackage=myapps

A new folder ‘streams.examples’ should appear where you ran the command. It includes a lot of
examples, but these are not needed for now. Go into the streams.examples folder and remove all

examples with:

sudo rm src/main/java/myapps/*.java

Now add a new file WordCount.java in the folder streams.examples/src/main/java with the

following code:

package myapps;

import org.apache. .common.serialization.Serdes;
import org.apache. .streams.KafkaStreams;

import org.apache. .streams.StreamsBuilder;
import org.apache. .streams.StreamsConfig;
import org.apache. .streams.Topology;

import org.apache. .streams.kstream.KStream;

Page 8 of 16

Kafka and Storm on Raspberry Pi // INSA Lyon - Département Télécommunications

import org.apache.kafka.streams.kstream.KTable;
import org.apache.kafka.streams.kstream.Materialized;
import org.apache.kafka.streams.kstream.Produced;

import java.util.Arrays;

import java.util.Locale;

import java.util.Properties;

import java.util.concurrent.CountDownlLatch;

// For in-memory key-value store
import org.apache.kafka.streams.state.StoreBuilder;
import org.apache.kafka.streams.state.Stores;

public class WordCount {

public static void main(String[] args) throws Exception {

Properties props = new Properties();

props.put(StreamsConfig.APPLICATION_ID CONFIG, "streams-wordcount");

props.put(StreamsConfig.BOOTSTRAP_SERVERS_ CONFIG, "localhost:9092");

props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_ CONFIG,
Serdes.String().getClass());

props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG,
Serdes.String().getClass());

final StreamsBuilder builder = new StreamsBuilder();

KStream<String, String> textlines =
builder.stream("streams-plaintext-input");
KTable<String, Long> wordCounts = textlLines
.flatMapValues(textLine ->
Arrays.aslList(textLine.tolLowerCase().split("\\W+")))
.groupBy((key, word) -> word)
.count(Materialized.<String,
Long>as(Stores.inMemoryKeyValueStore("myStore")));
wordCounts.toStream().to("streams-wordcount-output"”,
Produced.with(Serdes.String(), Serdes.Long()));

final Topology topology = builder.build();
final KafkaStreams streams = new KafkaStreams(topology,
final CountDownLatch latch = new CountDownLatch(1);

Runtime.getRuntime().addShutdownHook (new
Thread("streams-shutdown-hook") {
@Override

Page 9 of 16

Kafka and Storm on Raspberry Pi // INSA Lyon - Département Télécommunications

public void run() {
streams.close();
latch.countDown();

1)

try {

streams.start();
latch.await();

} catch (Throwable e) {
System.exit(1);

}

System.exit(0);

}

The example WordCount from the official Kafka Streams Quick start guide will not be able to run
on the ARM processor of the Raspberry Pi. The example uses a memory store relying on
RocksDB to store strings and counts, but RocksDB does not support ARM. The above code
instead uses an in-memory key-values store. Some packages has been imported and a ‘)’ has

also been added, since the official code cannot compile at the moment without these corrections.

How to compile and run the WordCount example

Open up a consumer on the topic ‘streams-plaintext-input’ and a producer on the topic
‘streams-wordcount-output’.

Run the following command from the streams.examples folder to compile the code:

sudo mvn clean package

And then run the following to execute the project:

sudo mvn exec:java -Dexec.mainClass=myapps.WordCount

Extra: How to set up an automatic producer for the WordCount example

Download the code with:

git clone https://github.com/sdpatil/KafkaAPIClient.git

Update the following dependency in the pom.xml file.

Page 10 of 16

Kafka and Storm on Raspberry Pi // INSA Lyon - Département Télécommunications

<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version> .0</version> <!-- Updated from
</dependency>

This is due to an internal timestamp bug for producers, which is fixed in the newer version.

Change the Producer.java from folder KafkaAPIClient/src/main/java/com/spnotes/kafka/simple

with the following code. That will make the producer produce and send 100.000 strings to topic

‘streams-plaintext-input’ and then shut down.

package com.spnotes.kafka.simple;

import
import
import

import

import

import
import
import

public

org.apache.kafka.clients.producer.KafkaProducer;
org.apache.kafka.clients.producer.ProducerConfig;
org.apache.kafka.clients.producer.ProducerRecord;

java.util.Properties;
java.util.Scanner;

java.sqgl.Timestamp;
java.text.SimpleDateFormat;
java.util.Date;

class Producer {
private static Scanner inj;
public static void main(String[] argv)throws Exception {
if (argv.length != 1) {
System.err.println("Please specify 1 parameters ");
System.exit(-1);

}
String topicName = "streams-plaintext-input";
= new Scanner(System.in);
System.out.println("Enter message(type exit to quit)");

Page 11 of 16

Kafka and Storm on Raspberry Pi // INSA Lyon - Département Télécommunications

Properties configProperties = new Properties();

configProperties.put(ProducerConfig.BOOTSTRAP_SERVERS CONFIG, "localhost:909
2");

configProperties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache
.kafka.common.serialization.ByteArraySerializer");

configProperties.put(ProducerConfig.VALUE_SERIALIZER CLASS CONFIG, "org.apac
he.kafka.common.serialization.StringSerializer");

org.apache.kafka.clients.producer.Producer producer = new
KafkaProducer(configProperties);

String line = "Producer is working and counter is counting";

ProducerRecord<String, String> rec = new ProducerRecord<String,
String>(topicName,line);

String timestamp = new SimpleDateFormat("SSSSSS").format(new
Timestamp(System.currentTimeMillis()));

ProducerRecord<String, String> timestampToSend = new
ProducerRecord<String, String>(topicName,timestamp);

producer.send(timestampToSend);

while(!line.equals("exit")) {
for(int i = 0; i < ; di++){
producer.send(rec);
if(!(line.equals("Producer is working and counter is
counting"))) {
break;

}

}
String timestamp2 = new SimpleDateFormat("SSSSSS").format(new

Timestamp(System.currentTimeMillis()));
ProducerRecord<String, String> timestampToSend2 = new
ProducerRecord<String, String>(topicName,timestamp2);
producer.send(timestampToSend2);

break;

in.close();
producer.close();

}

Page 12 of 16

Kafka and Storm on Raspberry Pi // INSA Lyon - Département Télécommunications

Open a consumer, the WordCount and finally the Producer.

To compile the producer, use:

sudo mvn clean compile assembly:single

To run the producer, use:

sudo java -cp target/KafkaAPIClient- -SNAPSHOT-jar-with-dependencies.jar

com.spnotes.kafka.simple.Producer test

Reference for producer:
https://www.javaworld.com/article/3060078/big-data/big-data-messaging-with-kafka-part-1.html

Apache Storm

Download a binary version of Storm to the Raspberry's with wget or directly to the SD card.

Set up of the settings

Update the conf/storm.yaml file with the following settings:

storm.zookeeper.servers:

- "localhost"
storm.local.dir: "</path/to/storm/data(any path)>"
nimbus.host: "localhost"

supervisor.slots.ports:
- 6700
- 6701
- 6702
- 6703

Commands

Start Storm:

sudo bin/storm start

Start Storm nimbus:

sudo bin/storm nimbus

Start Storm supervisor:

Page 13 of 16

https://www.javaworld.com/article/3060078/big-data/big-data-messaging-with-kafka-part-1.html

Kafka and Storm on Raspberry Pi // INSA Lyon - Département Télécommunications

sudo bin/storm supervisor

Start Storm Ul, which can be accessed at http://<nimbus ip-address>/index.html on any computer
connected to the same network:

sudo bin/storm ui

Kill a topology. Be aware that the topology created with the WordCount example is called

‘production-topology’.

sudo bin/storm kill <topology-name>

How to set up the WordCount example

The example is pre-installed with Storm. You can find it in the folder examples/storm-starter.

How to compile and run the WordCount example

Start a nimbus, supervisor and the UL

Run the following command from the folder examples/storm-starter.

sudo mvn clean install -DskipTests=true

Now run the following command to compile and execute the project from the top directory folder
of Storm.

sudo bin/storm jar examples/storm-starter/target/storm-starter-*.jar

org.apache.storm.starter.WordCountTopology production-topology remote

How to close down running terminal tasks and shutdown
the Raspberry Pi's

Ctrl + C will close down tasks like producers, consumers and running servers in the terminal.
You can kill a Storm topology in the UL

Use the following command to safely shutdown a Raspberry Pi:

sudo shutdown -h now

Page 14 of 16

Kafka and Storm on Raspberry Pi // INSA Lyon - Département Télécommunications

Benchmark

Word counting is compared between Kafka and Storm after 10 minutes of running.

Total count of counted words in the last 10 minutes of running

B Apache Kafka

B 2pache Storm

Counted words

After about 10 After about 20 After about 30
minutes of running minutes of running minutes of running

Sources of error

The Storm Ul is used to extract the number of processed and counted words in the last 10

minutes of use. The word count is precise. But the 20 and 30 minutes mark was measured using
a stopwatch.

The 10 minutes of runtime in Kafka is simply measured using a stop timer. The consumer,
WordCount and Producer is stopped manually 10, 20 and 30 minutes after being started, and
therefore the final word count is more imprecise.

Both Raspberry Pi's used for the test were running for at least an hour before the test. But they
have different cooling. The Raspberry Pi for the nimbus in Storm and for the follower in Kafka

uses a more powerful fan than the other machine, which was used as supervisor in Storm and
leader in Kafka.

Page 15 of 16

Kafka and Storm on Raspberry Pi // INSA Lyon - Département Télécommunications

References

The following guides and webpages has been used to create this guide.

https://medium.com/@oliver_hu/set-up-a-kafka-cluster-with-raspberry-pi-2859005a9bed

https://kafka.apache.org/11/documentation/streams/

https://www.javaworld.com/article/3060078/big-data/big-data-messaging-with-kafka-part-1.html

https://github.com/apache/storm/blob/master/examples/storm-starter/README.markdown

Page 16 of 16

https://medium.com/@oliver_hu/set-up-a-kafka-cluster-with-raspberry-pi-2859005a9bed
https://kafka.apache.org/11/documentation/streams/
https://www.javaworld.com/article/3060078/big-data/big-data-messaging-with-kafka-part-1.html
https://github.com/apache/storm/blob/master/examples/storm-starter/README.markdown

